Title of article :
Characteristic classes and transversality
Author/Authors :
Aguilar، نويسنده , , Marcelo A. and Cisneros-Molina، نويسنده , , José Luis and Frيas-Armenta، نويسنده , , Martيn Eduardo and Verduzco، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2007
Abstract :
Let ξ be a smooth vector bundle over a differentiable manifold M. Let h : ε n − i + 1 → ξ be a generic bundle morphism from the trivial bundle of rank n − i + 1 to ξ. We give a geometric construction of the Stiefel–Whitney classes when ξ is a real vector bundle, and of the Chern classes when ξ is a complex vector bundle. Using h we define a differentiable closed manifold Z ˜ ( h ) and a map ϕ : Z ˜ ( h ) → M whose image is the singular set of h. The ith characteristic class of ξ is the Poincaré dual of the image, under the homomorphism induced in homology by ϕ, of the fundamental class of the manifold Z ˜ ( h ) . We extend this definition for vector bundles over a paracompact space, using that the universal bundle is filtered by smooth vector bundles.
Keywords :
Characteristic classes , Generic bundle morphisms
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications