Title of article :
The Banach–Mazur compactum is homeomorphic to the orbit space
Author/Authors :
Antonyan، نويسنده , , Sergey A.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2007
Pages :
9
From page :
1236
To page :
1244
Abstract :
We prove a general theorem about the orbit spaces of compact Lie group actions which are Hilbert cube manifolds. This result is further applied to prove that the Banach–Mazur compactum BM ( 2 ) is homeomorphic to the orbit space ( exp S 1 ) / O ( 2 ) , where exp S 1 is the hyperspace of all nonempty closed subsets of the unit circle S 1 endowed with the induced action of the orthogonal group O ( 2 ) .
Keywords :
Orbit space , G-AR , Hilbert cube manifold , Hyperspace , Banach–Mazur compactum , circle
Journal title :
Topology and its Applications
Serial Year :
2007
Journal title :
Topology and its Applications
Record number :
1581245
Link To Document :
بازگشت