Title of article :
Algorithms for finding connected separators between antipodal points
Author/Authors :
Boronski، نويسنده , , Jan P. and Minc، نويسنده , , Piotr and Turza?ski، نويسنده , , Marian، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2007
Pages :
11
From page :
3156
To page :
3166
Abstract :
A set (or a collection of sets) contained in the Euclidean space R m is symmetric if it is invariant under the antipodal map. Given a symmetric unicoherent polyhedron X (like an n-dimensional cube or a sphere) and an odd real function f defined on vertices of a certain symmetric triangulation of X, we algorithmically construct a connected symmetric separator of X by choosing a subcollection of the triangulation. Each element of the subcollection contains the vertices v and u such that f ( v ) f ( u ) ⩽ 0 .
Keywords :
algorithm , Odd functions , Spheres , Cubes , Antipodal map , Connected symmetric separators , Unicoherent topological polytope , involution
Journal title :
Topology and its Applications
Serial Year :
2007
Journal title :
Topology and its Applications
Record number :
1581509
Link To Document :
بازگشت