Title of article :
Refinable and monotone maps revisited
Author/Authors :
Cicho?، نويسنده , , Daniel and Krupski، نويسنده , , Pawe? and Omiljanowski، نويسنده , , Krzysztof، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2008
Pages :
6
From page :
207
To page :
212
Abstract :
Generalizing results by J. Ford, J. W. Rogers, Jr. and H. Kato we prove that (1) a map f from a G-like continuum onto a graph G is refinable iff f is monotone; (2) a graph G is an arc or a simple closed curve iff every G-like continuum that contains no nonboundary indecomposable subcontinuum admits a monotone map onto G. ve that if bonding maps in the inverse sequence of compact spaces are refinable then the projections of the inverse limit onto factor spaces are refinable. We use this fact to show that refinable maps do not preserve completely regular or totally regular continua.
Keywords :
graph , Refinable map , Monotone map , Totally regular curve
Journal title :
Topology and its Applications
Serial Year :
2008
Journal title :
Topology and its Applications
Record number :
1581550
Link To Document :
بازگشت