Title of article :
Linearization of proper group actions
Author/Authors :
Antonyan، نويسنده , , Natella and Antonyan، نويسنده , , Sergey A. and Rodrيguez-Medina، نويسنده , , Leonardo، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2009
Abstract :
We prove that if G is a locally compact group acting properly (in the sense of R. Palais) on a space X that is metrizable by a G-invariant metric, then X can be embedded equivariantly into a normed linear G-space E endowed with a linear isometric G-action which is proper on the complement E ∖ { 0 } . If, in addition, G is a Lie group then E ∖ { 0 } is a G-equivariant absolute extensor. One can make this equivariant embedding even closed, but in this case the non-proper part of the linearizing G-space E may be an entire subspace instead of {0}.
Keywords :
Locally compact group , G-ANR space , Linearization , Slice , Proper G-space
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications