Title of article :
Preserving Z-sets by Dranishnikovʹs resolution
Author/Authors :
Ageev، نويسنده , , Sergey M. and Cencelj، نويسنده , , Matija and Repov?، نويسنده , , Du?an، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2009
Pages :
14
From page :
2175
To page :
2188
Abstract :
We prove that Dranishnikovʹs k-dimensional resolution d k : μ k → Q is a UVn − 1-divider of Chigogidzeʹs k-dimensional resolution c k . This fact implies that d k − 1 preserves Z-sets. A further development of the concept of UVn − 1-dividers permits us to find sufficient conditions for d k − 1 ( A ) to be homeomorphic to the Nöbeling space ν k or the universal pseudoboundary σ k . We also obtain some other applications.
Keywords :
Nِbeling space , Dranishnikovיs resolution , Z-set , UV n -divider , Menger compactum , Menger manifold , Chigogidzeיs resolution , polyhedron , Polish space , Pseudoboundary
Journal title :
Topology and its Applications
Serial Year :
2009
Journal title :
Topology and its Applications
Record number :
1582145
Link To Document :
بازگشت