Title of article :
Dynamics of twisted Alexander invariants
Author/Authors :
Silver، نويسنده , , Daniel S. and Williams، نويسنده , , Susan G.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2009
Pages :
17
From page :
2795
To page :
2811
Abstract :
The Pontryagin dual of the based Alexander module of a link twisted by a GL N Z representation is an algebraic dynamical system with an elementary description in terms of colorings of a diagram. Its topological entropy is the exponential growth rate of the number of torsion elements of twisted homology groups of abelian covers of the link exterior. isted Alexander polynomial obtained from any nonabelian parabolic SL 2 C representation of a 2-bridge knot group is seen to be nontrivial. The zeros of any twisted Alexander polynomial of a torus knot corresponding to a parabolic SL 2 C representation or a finite-image permutation representation are shown to be roots of unity.
Keywords :
knot , Twisted Alexander polynomial , Fox coloring , Mahler measure
Journal title :
Topology and its Applications
Serial Year :
2009
Journal title :
Topology and its Applications
Record number :
1582249
Link To Document :
بازگشت