Title of article :
On the Kneser property for reaction–diffusion systems on unbounded domains
Author/Authors :
Morillas، نويسنده , , Francisco J. Valero-Cuevas، نويسنده , , José، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2009
Pages :
12
From page :
3029
To page :
3040
Abstract :
We prove the Kneser property (i.e. the connectedness and compactness of the attainability set at any time) for reaction–diffusion systems on unbounded domains in which we do not know whether the property of uniqueness of the Cauchy problem holds or not. this property we obtain that the global attractor of such systems is connected. y, these results are applied to the complex Ginzburg–Landau equation.
Keywords :
Kneser property , Unbounded domain , reaction–diffusion system , Set-valued dynamical system , global attractor
Journal title :
Topology and its Applications
Serial Year :
2009
Journal title :
Topology and its Applications
Record number :
1582290
Link To Document :
بازگشت