Title of article :
Discrete Morse theory on graphs
Author/Authors :
Ayala، نويسنده , , R. and Fernلndez، نويسنده , , L.M. and Fernلndez-Ternero، نويسنده , , D. and Vilches، نويسنده , , J.A.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2009
Abstract :
We characterize the topology of a graph in terms of the critical elements of a discrete Morse function defined on it. Besides, we study the structure and some properties of the gradient vector field induced by a discrete Morse function defined on a graph. Finally, we get results on the number of non-homologically equivalent excellent discrete Morse functions defined on some kind of graphs.
Keywords :
Gradient path , Infinite locally finite graph , Critical element , Gradient vector field
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications