Title of article :
Bockstein basis and resolution theorems in extension theory
Author/Authors :
Toni?، نويسنده , , Vera، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Abstract :
We prove a generalization of the Edwards–Walsh Resolution Theorem: Theorem
be an abelian group with P G = P , where P G = { p ∈ P : Z ( p ) ∈ Bockstein basis σ ( G ) } . Let n ∈ N and let K be a connected CW-complex with π n ( K ) ≅ G , π k ( K ) ≅ 0 for 0 ⩽ k < n . Then for every compact metrizable space X with XτK (i.e., with K an absolute extensor for X), there exists a compact metrizable space Z and a surjective map π : Z → X such that(a)
ell-like,
⩽ n , and
Keywords :
Bockstein basis , Cell-like map , Cohomological dimension , CW-complex , Dimension , Edwards–Walsh resolution , Eilenberg–MacLane complex , G-acyclic map , Inverse sequence , Simplicial complex
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications