Title of article :
Adjoint entropy vs topological entropy
Author/Authors :
Giordano Bruno، نويسنده , , Anna، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2012
Pages :
16
From page :
2404
To page :
2419
Abstract :
Recently the adjoint algebraic entropy of endomorphisms of abelian groups was introduced and studied in Dikranjan (2010) [6]. We generalize the notion of adjoint entropy to continuous endomorphisms of topological abelian groups. Indeed, the adjoint algebraic entropy is defined using the family of all finite-index subgroups, while we take only the subfamily of all open finite-index subgroups to define the topological adjoint entropy. This allows us to compare the topological adjoint entropy with the known topological entropy of continuous endomorphisms of compact abelian groups. In particular, the topological adjoint entropy and the topological entropy coincide on continuous endomorphisms of totally disconnected compact abelian groups. Moreover, we prove two so-called Bridge Theorems between the topological adjoint entropy and the algebraic entropy using respectively the Pontryagin duality and the precompact duality.
Keywords :
Algebraic entropy , Adjoint entropy , Topological entropy , Pontryagin duality , Abelian groups
Journal title :
Topology and its Applications
Serial Year :
2012
Journal title :
Topology and its Applications
Record number :
1583417
Link To Document :
بازگشت