Title of article :
Precompact Fréchet topologies on Abelian groups
Author/Authors :
Ondrej Hrusak، نويسنده , , M. and Ramos-Garc?a، نويسنده , , U.A.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2012
Abstract :
We study precompact Fréchet topologies on countable Abelian groups. For every countable Abelian group G we introduce the notion of a γ G -set and show that there is a precompact Fréchet non-metrizable topology on G if and only if there is an uncountable γ G -set that separates points of G. We show that, assuming the existence of an uncountable γ-set, there is a non-metrizable precompact Fréchet topology on every countable Abelian group, and assuming p > ω 1 , there is a non-metrizable Fréchet topology on every countable group which admits a non-discrete topology at all. We further study the notion of a γ G -set and show that the minimal size of a subset of the dual group G ⁎ which is not a γ G -set is the pseudointersection number p for any countable Abelian group G.
Keywords :
Precompact topologies , Abelian Fréchet groups , ?-set , Pseudointersection number
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications