Title of article :
Simplicial resolutions and spaces of algebraic maps between real projective spaces
Author/Authors :
Kozlowski، نويسنده , , A. and Yamaguchi، نويسنده , , K.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Pages :
12
From page :
87
To page :
98
Abstract :
We show that the space A ˜ d ( m , n ) consisting of all real projective classes of ( n + 1 ) -tuples of real coefficients homogeneous polynomials of degree d in ( m + 1 ) variables, without common real roots except zero, has the same homology as the space Map ( R P m , R P n ) of continuous maps from the m-dimensional real projective space R P m into the n real dimensional projective space R P n up to dimension ( n − m ) ( d + 1 ) − 1 . This considerably improves the main result of Adamaszek et al. (2011) [1].
Keywords :
Simplicial resolution , Truncated simplicial resolution , Algebraic map , Vassiliev spectral sequence , Homotopy equivalence
Journal title :
Topology and its Applications
Serial Year :
2013
Journal title :
Topology and its Applications
Record number :
1583614
Link To Document :
بازگشت