Title of article :
Periodic points, compactifications and eventual colorings of maps
Author/Authors :
Kato، نويسنده , , Hisao، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Pages :
7
From page :
685
To page :
691
Abstract :
In this paper, we investigate some properties concerning periodic points of maps and compactifications of spaces. By use of the properties, we prove the following theorems: t X be a finite-dimensional separable metric space and let f : X → X be a fixed-point free closed map with zero-dimensional set of periodic points. If f : X → X satisfies the condition sup { | f − 1 ( x ) | ; x ∈ X } < ∞ , then f is eventually 2-colorable. et X be a locally compact, separable metric finite-dimensional space. If f : X → X is any fixed-point free map with zero-dimensional set of periodic points, then f is eventually 2-colorable.
Keywords :
Dimension , Periodic point , Fixed-point free map , Wallman compactification , Finite-to-one map , Coloring , Eventual coloring
Journal title :
Topology and its Applications
Serial Year :
2013
Journal title :
Topology and its Applications
Record number :
1583721
Link To Document :
بازگشت