Title of article :
The revised and uniform fundamental groups and universal covers of geodesic spaces
Author/Authors :
Wilkins، نويسنده , , Jay، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Abstract :
Sormani and Wei proved in 2004 that a compact geodesic space has a categorical universal cover if and only if its covering/critical spectrum is finite. We add to this several equivalent conditions pertaining to the geometry and topology of the revised and uniform fundamental groups. We show that a compact geodesic space X has a universal cover if and only if the following hold: 1) its revised and uniform fundamental groups are finitely presented, or, more generally, countable; 2) its revised fundamental group is discrete as a quotient of the quasitopological fundamental group π 1 qtop ( X ) . In the process, we classify the topological singularities in X, and we show that the above conditions imply closed liftings of all sufficiently small path loops to all covers of X, generalizing the traditional semilocally simply connected property. A geodesic space X with this new property is called semilocally r-simply connected, and X has a universal cover if and only if it satisfies this condition. We then introduce the covering topology on π 1 ( X ) , which can be considered a geometrization of both Brazas–Fabelʼs shape topology and the topology induced by the more general Spanier groups. We establish several connections between properties of the covering topology, the existence of simply connected and universal covers, and geometries on the fundamental group.
Keywords :
Revised fundamental group , Uniform fundamental group , Geodesic space , Universal cover , Critical spectrum , Quasitopological fundamental group
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications