• Title of article

    Cardinal invariants and -factorizability in paratopological groups

  • Author/Authors

    Xie، نويسنده , , Li-Hong and Lin، نويسنده , , Shou، نويسنده ,

  • Issue Information
    دوماهنامه با شماره پیاپی سال 2013
  • Pages
    12
  • From page
    979
  • To page
    990
  • Abstract
    In this paper, cardinal invariants and R -factorizability in paratopological groups are studied. The main results are that (1) w ( G ) = ib ( G ⁎ ) × χ ( G ) holds for every paratopological group G; (2) every paratopological group G satisfies | G | ⩽ 2 i b ( G ⁎ ) ψ ( G ) ; (3) nw ( G ) = Nag ( G ) × ψ ( G ) is valid for every completely regular paratopological group G; (4) a completely regular paratopological group G is R 2 -factorizable (resp. R 3 -factorizable) if and only if it is a totally ω-narrow paratopological group with property ω-QU and Hs ( G ) ⩽ ω (resp. Ir ( G ) ⩽ ω ); (5) if G is a completely regular R 2 -factorizable (resp. R 3 -factorizable) paratopological group and p : G → K an open homomorphism onto a paratopological group K such that p − 1 ( e ) is countably compact, then K is R 2 -factorizable (resp. R 3 -factorizable), which gives a partial answer to the question posed by M. Sanchis and M.G. Tkachenko (2010) [17].
  • Keywords
    Property ?-QU , ?-Narrow , ?-Quasi-uniform continuity , Paratopological group , Cardinal invariant , R -factorizability
  • Journal title
    Topology and its Applications
  • Serial Year
    2013
  • Journal title
    Topology and its Applications
  • Record number

    1583764