Title of article :
On seminormal functors and compact spaces of uncountable character
Author/Authors :
Ivanov، نويسنده , , A.V. and Kashuba، نويسنده , , E.V. and Matyushichev، نويسنده , , K.V. and Stepanova، نويسنده , , E.N.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Pages :
5
From page :
1606
To page :
1610
Abstract :
We prove that for every seminormal functor F of finite degree n > 1 and a compact space X of uncountable character at a point p ∈ X the space F ( X ) ∖ { p } is not normal. This generalizes a theorem of A.V. Arhangelʼskiĭ and A.P. Kombarov (1990) [1] asserting that for every compact space X the normality of the space X 2 ∖ { ( p , p ) } implies the countability of character of X at the point p.
Keywords :
Normal space , Seminormal functor , First axiom of countability
Journal title :
Topology and its Applications
Serial Year :
2013
Journal title :
Topology and its Applications
Record number :
1583877
Link To Document :
بازگشت