Title of article :
Remarks on countable tightness
Author/Authors :
Scheepers، نويسنده , , Marion، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Abstract :
Countable tightness may be destroyed by countably closed forcing. We characterize the indestructibility of countable tightness under countably closed forcing by combinatorial statements similar to the ones Tall used to characterize indestructibility of the Lindelِf property under countably closed forcing. We consider the behavior of countable tightness in generic extensions obtained by adding Cohen reals. We show that certain classes of well-studied topological spaces are indestructibly countably tight. Stronger versions of countable tightness, including selective versions of separability, are further explored.
Keywords :
Selection principle , HFD , Selective separability , Infinite game , Countable strong fan tightness , Indestructibly countably tight
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications