Title of article :
On algebraic-analytic aspects of the abelian Liouville-Arnold integrability by quadratures of Hamiltonian systems on cotangent spaces
Author/Authors :
Prykarpatsky، نويسنده , , Anatoliy K. Prykarpatsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
11
From page :
233
To page :
243
Abstract :
A symplectic theory approach is developed for solving the problem of algebraicanalytical construction of integral submanifold imbedding mapping for integrable via the abelian Liouville-Arnold theorem Hamiltonian systems on canonically symplectic phase spaces. The related Picard-Fuchs type equations are derived for the first time straightforwardly, making use of a method based on generalized Francoise-Galissot-Reeb differential-geometric results. The relationships between toruslike compact integral submanifolds of a Liouville-Arnold integrable Hamiltonian system and solutions to corresponding Picard-Fuchs type equations is stated.
Journal title :
Reports on Mathematical Physics
Serial Year :
2000
Journal title :
Reports on Mathematical Physics
Record number :
1584689
Link To Document :
بازگشت