Title of article :
Classical and quantum mechanics from the universal Poisson-Rinehart algebra of a manifold
Author/Authors :
Morchio، نويسنده , , G. and Strocchi، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
16
From page :
33
To page :
48
Abstract :
The Lie and module (Rinehart) algebraic structure of vector fields of compact support over C∞ functions on a (connected) manifold M define a unique universal noncommutative Poisson *-algebra Λ R ( M ) . For a compact manifold, a (antihermitian) variable Z ∈ Λ R ( M ) , central with respect to both the product and the Lie product, relates commutators and Poisson brackets; in the noncompact case, sequences of locally central variables allow for the addition of an element with the same rôle. Quotients with respect to Z*Z-z2I, z ≥ 0, define classical Poisson algebras and quantum observable algebras, with z = ħ. Under standard regularity conditions, the corresponding states and Hilbert space representations uniquely give rise to classical and quantum mechanics on M .
Keywords :
Lie-Rinehart algebras , Poisson algebras , quantization
Journal title :
Reports on Mathematical Physics
Serial Year :
2009
Journal title :
Reports on Mathematical Physics
Record number :
1584848
Link To Document :
بازگشت