Title of article :
Birkhoffian formulations of nonholonomic constrained systems
Author/Authors :
Guo، نويسنده , , Y.X. and Luo، نويسنده , , S.K. and Shang، نويسنده , , M. L. Mei، نويسنده , , F.X.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
10
From page :
313
To page :
322
Abstract :
Only for some special nonholonomic constrained systems can a canonical Hamiltonian structure be realized. Based on a reduction of a nonholonomic system to a conditional holonomic system, a universal symplectic structure for a constrained system can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics, which preserves symbiotic character among derivability from a variational principle, Lie algebra and symplectic geometry. Two examples are presented.
Keywords :
Birkhoffיs equations , symplectic geometry , Hamiltonian mechanics , nonholonomic constrained systems
Journal title :
Reports on Mathematical Physics
Serial Year :
2001
Journal title :
Reports on Mathematical Physics
Record number :
1585405
Link To Document :
بازگشت