Title of article :
A quantum group at roots of unity
Author/Authors :
Pusz، نويسنده , , W. and Woronowicz، نويسنده , , S.L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
32
From page :
431
To page :
462
Abstract :
We construct a quantum deformation of corresponding to the deformation parameter , where N is an even natural number. Hopf *-algebra, Hilbert space and C*-algebra levels are considered. The C*-algebra A, which may be interpreted as the algebra of all continuous functions on the group vanishing at infinity, is generated by five elements α, β, γ, δ and det−1 satisfying certain commutation relations completed by hermiticity conditions. The group structure is encoded by a comultiplication Φ ϵ Mor (A, A ⊗ A) acting on generators in the standard way. On the Hopf algebra level our deformation corresponds to a one-parameter family of the standard two-parameter deformations .
Keywords :
Hopf *-algebra , C*-algebra , Locally compact group , Quantum group , Hilbert space , representation , unbounded operator , quantum exponential function
Journal title :
Reports on Mathematical Physics
Serial Year :
2001
Journal title :
Reports on Mathematical Physics
Record number :
1585420
Link To Document :
بازگشت