Title of article :
On negative eigenvalues of generalized laplace operators
Author/Authors :
Albeverio، نويسنده , , S and Karwowski، نويسنده , , W and Koshmanenko، نويسنده , , V، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
29
From page :
359
To page :
387
Abstract :
The negative eigenvalues problem for the generalized Laplace operator −Δ = −Δ++αT, α < 0, where T is a positive operator singular in L2 and acting from the Sobolev space W12 to its dual W−12, is investigated. The question, whether the number of negative eigenvalues N_(−Δ) is finite or infinite is answered. Under the assumption that the not necessarily compact operator T = (I − Δ)−1T in W12 has a discrete spectrum, different conditions leading to N_(−Δ) = ∞, as well as to N_(−Δ) < ∞ are found and the corresponding examples are given.
Keywords :
negative eigenvalues problem , generalized Laplace operator , Singular perturbations
Journal title :
Reports on Mathematical Physics
Serial Year :
2001
Journal title :
Reports on Mathematical Physics
Record number :
1585435
Link To Document :
بازگشت