Title of article :
On the finiteness of the discrete spectrum of four-particle lattice Schrِdinger operators
Author/Authors :
Albeverio، نويسنده , , Sergio and Lakaev، نويسنده , , Saidakhmat N. and Abdullaev، نويسنده , , Janikul I.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
28
From page :
43
To page :
70
Abstract :
A Hamiltonian describing four quantum mechanical particles (bosons) moving on a lattice is considered. The corresponding Fredholmʹs integral equations of the Faddeev-Yakubovskii and Weinberg type are obtained and the location and structure of the essential spectrum are studied. The finiteness of the discrete spectrum for all interactions and the absence of eigenvalues lying outside the essential spectrum for the case of “weak interactions” are proved.
Keywords :
Hamiltonian , Quantum mechanical , four-particle , Fredholm equations , Faddeev-Yakubovskii equations , Essential spectrum , Weinberg equations , branch of the essential spectrum
Journal title :
Reports on Mathematical Physics
Serial Year :
2003
Journal title :
Reports on Mathematical Physics
Record number :
1585509
Link To Document :
بازگشت