Title of article :
Use of in vitro gas production models in ruminal kinetics
Author/Authors :
Pitt، نويسنده , , R.E. and Cross، نويسنده , , T.L. and Pell، نويسنده , , A.N. and Schofield، نويسنده , , P. and Doane، نويسنده , , P.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
Physiological systems models for ruminant animals are used to predict the extent of ruminal carbohydrate digestion, based on rates of intake, digestion, and passage to the lower tract. Digestion of feed carbohydrates is described in these models by a first-order rate constant. Recently, an in vitro gas production technique has been developed to determine the digestion kinetics in batch fermentation, and nonlinear mathematical models have been fitted to the cumulative gas production data from these experiments. In this paper, we present an analysis that converts these gas production models to an effective first-order rate constant that can be used directly in rumen systems models. The analysis considers the digestion of an incremental mass of substrate entering the rumen. The occurrence of passage is represented probabilistically, and integration through time gives the total mass of substrate and total rate of digestion in the rumen. To demonstrate the analysis, several gas production models are fitted to a sample data set for corn silage, and the effective first-order rate constants are calculated. The rate constants for digestion depend on ruminal passage rate, an interaction that arises from the nonlinearity of the gas production models.
Keywords :
Carbohydrate digestion , Passage rate , Gas production , Rumen
Journal title :
Mathematical Biosciences
Journal title :
Mathematical Biosciences