Title of article :
Spreading disease: integro-differential equations old and new
Author/Authors :
Medlock، نويسنده , , Jan and Kot، نويسنده , , Mark، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
We investigate an integro-differential equation for a disease spread by the dispersal of infectious individuals and compare this to Mollison’s [Adv. Appl. Probab. 4 (1972) 233; D. Mollison, The rate of spatial propagation of simple epidemics, in: Proc. 6th Berkeley Symp. on Math. Statist. and Prob., vol. 3, University of California Press, Berkeley, 1972, p. 579; J. R. Statist. Soc. B 39 (3) (1977) 283] model of a disease spread by non-local contacts. For symmetric kernels with moment generating functions, spreading infectives leads to faster traveling waves for low rates of transmission, but to slower traveling waves for high rates of transmission. We approximate the shape of the traveling waves for the two models using both piecewise linearization and a regular-perturbation scheme.
Keywords :
biological invasions , epidemics , dispersal , Integro-differential equations , Traveling waves
Journal title :
Mathematical Biosciences
Journal title :
Mathematical Biosciences