Title of article :
On linear perturbations of the Ricker model
Author/Authors :
Braverman، نويسنده , , Elena and Kinzebulatov، نويسنده , , Damir، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
A class of linearly perturbed discrete-time single species scramble competition models, like the Ricker map, is considered. Perturbations can be of both recruitment and harvesting types. Stability (bistability) is considered for models, where parameters of the map do not depend on time. For models with recruitment, the result is in accordance with Levin and May conjecture [S.A. Levin, R.M. May, A note on difference delay equations, Theor. Pop. Biol. 9 (1976) 178]: the local stability of the positive equilibrium implies its global stability. For intrinsic growth rate r → ∞ the way to chaos is broken down to get extinction of population for the depletion case and to establish a stable two-cycle period for models with immigration. The latter behaviour is also studied for models with random discrete constant perturbations of recruitment type. Extinction, persistence and existence of periodic solutions are studied for the perturbed Ricker model with time-dependent parameters.
Keywords :
persistence , Break of the route to chaos , stability , Ricker population model , Harvesting and recruitment , Truncated maps , extinction
Journal title :
Mathematical Biosciences
Journal title :
Mathematical Biosciences