Title of article :
The Ross–Macdonald model in a patchy environment
Author/Authors :
Auger، نويسنده , , Pierre and Kouokam، نويسنده , , Etienne and Sallet، نويسنده , , Gauthier and Tchuente، نويسنده , , Maurice and Tsanou، نويسنده , , Berge، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We generalize to n patches the Ross–Macdonald model which describes the dynamics of malaria. We incorporate in our model the fact that some patches can be vector free. We assume that the hosts can migrate between patches, but not the vectors. The susceptible and infectious individuals have the same dispersal rate. We compute the basic reproduction ratio R 0 . We prove that if R 0 ⩽ 1 , then the disease-free equilibrium is globally asymptotically stable. When R 0 > 1 , we prove that there exists a unique endemic equilibrium, which is globally asymptotically stable on the biological domain minus the disease-free equilibrium.
Keywords :
Ross–Macdonald model , Nonlinear dynamical systems , Global stability , Monotone systems , Metapopulation models , Vector-borne diseases
Journal title :
Mathematical Biosciences
Journal title :
Mathematical Biosciences