Title of article :
An improved tracking Kalman filter using a multilayered neural network
Author/Authors :
Takaba، نويسنده , , K. and Iiguni، نويسنده , , Y. and Tokumaru، نويسنده , , H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
10
From page :
119
To page :
128
Abstract :
This paper presents a method for improving the estimation accuracy of a tracking Kalman filter (TKF) by using a multilayered neural network (MNN). Estimation accuracy of the TKF is degraded due to the uncertainties which cannot be expressed by the linear state-space model given a priori. The MNN capable of learning an arbitrary nonlinear mapping is thus added to the TKF to compensate the uncertainties. The MNN is trained so that it realizes a mapping from, the measurements to the corrections of estimations of the TKF. Simulation results show that the estimation accuracy is much improved by using the MNN.
Keywords :
target tracking , Kalman filter , Model uncertainty , neural network
Journal title :
Mathematical and Computer Modelling
Serial Year :
1996
Journal title :
Mathematical and Computer Modelling
Record number :
1590411
Link To Document :
بازگشت