Title of article :
Convergency of the Monte Carlo algorithm for the solution of the Wigner quantum-transport equation
Author/Authors :
M. Nedjalkov، نويسنده , , M. and Dimov، نويسنده , , I. and Rossi، نويسنده , , F. and Jacoboni، نويسنده , , C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
8
From page :
159
To page :
166
Abstract :
The Wigner function provides a convenient description for single-particle quantum transport in space dependent systems, such as modern nanoelectronic devices. A Monte Carlo algorithm has been recently introduced for the solution of this integro-differential equation. However, when the potential applied to the system has different limits at + and −∞, a convergence problem arises for the kernel of the integral part of the equation. In this paper, we discuss the rigorous mathematical aspects of the convergency of the solution of the Wigner equation and of the Neumann expansion on which the Monte Carlo algorithm is based.
Keywords :
integral equations , Convergency , Monte Carlo Method , Neumann expansion , Wigner function
Journal title :
Mathematical and Computer Modelling
Serial Year :
1996
Journal title :
Mathematical and Computer Modelling
Record number :
1590433
Link To Document :
بازگشت