Title of article :
Thermal stress analysis for fatigue damage evaluation at a mixing tee
Author/Authors :
Kamaya، نويسنده , , Masayuki and Nakamura، نويسنده , , Akira، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
14
From page :
2674
To page :
2687
Abstract :
Fatigue cracks have been found at mixing tees where fluids of different temperature flow in. In this study, the thermal stress at a mixing tee was calculated by the finite element method using temperature transients obtained by a fluid dynamics simulation. The simulation target was an experiment for a mixing tee, in which cold water flowed into the main pipe from a branch pipe. The cold water flowed along the main pipe wall and caused a cold spot, at which the membrane stress was relatively large. Based on the evaluated thermal stress, the magnitude of the fatigue damage was assessed according to the linear damage accumulation rule and the rain-flow procedure. Precise distributions of the thermal stress and fatigue damage could be identified. Relatively large axial stress occurred downstream from the branch pipe due to the cold spot. The variation ranges of thermal stress and fatigue damage became large near the position 20° from the symmetry line in the circumferential direction. The position of the cold spot changed slowly in the circumferential direction, and this was the main cause of the fatigue damage. The fatigue damage was investigated for various differences in the temperature between the main and branch pipes. Since the magnitude of accumulated damage increased abruptly when the temperature difference exceeded the value corresponding to the fatigue limit, it was suggested that the stress amplitude should be suppressed less than the fatigue limit. In the thermal stress analysis for fatigue damage assessment, it was found that the detailed three-dimensional structural analysis was not required. Namely, for the current case, a one-dimensional simplified analysis could be used for evaluating the fatigue damage without adopting the stress enhancement factor Kt quoted in the JSME guideline. The results also suggested that, for a precise assessment of the fatigue damage at a mixing tee, the effect of multi-axial stress on the fatigue life together with the mean stress effect should be taken into account.
Journal title :
Nuclear Engineering and Design Eslah
Serial Year :
2011
Journal title :
Nuclear Engineering and Design Eslah
Record number :
1591038
Link To Document :
بازگشت