Title of article
Investigative studies on effect of reflector thickness on the performance of low enriched uranium-fueled miniature neutron source reactors
Author/Authors
Odoi، نويسنده , , H.C. and Akaho، نويسنده , , E.H.K. and Anim-Sampong، نويسنده , , S. A. Jonah، نويسنده , , S.A. and Nyarko، نويسنده , , B.J.B. and Abrefah، نويسنده , , R.G. and Ampomah-Amoako، نويسنده , , E. and Sogbadji، نويسنده , , R.B.M. and Lawson، نويسنده , , I. and Birinkorang، نويسنده , , S.A. and Ibrahim، نويسنده , , Y.V. and Boffie، نويسنده , , J.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
7
From page
2909
To page
2915
Abstract
Neutronics analyses were performed on the 30 kW(th) GHARR-1 facility to investigate the effects on increased beryllium annular reflector thickness on nuclear criticality safety and on the neutron flux levels in the experimental channels. The investigative study was carried out using the Monte Carlo code MCNP on a hypothetical LEU UO2 core theoretically enriched to 12.6% and having the same core configuration as the present 90.2% enriched HEU U-Al core. The analyses were performed on four models consisting of a reference model with 10.2 cm annular reflector thickness and three new design modification models with increased reflector thickness of 10.3, 10.4 and 10.5 cm respectively. The simulations indicated average thermal neutron fluxes of (9.80 ± 0.0017)E+11 n/cm2 s in the inner irradiation channels for the reference model, indicating a 2% decrease with respect to the nominal flux of 1.00E+12 n/cm2 s. Relatively lower neutron fluxes were obtained for the modification models with an average of (9.79 ± 0.0017)E+11 n/cm2 s, representing losses of 2.01% and 0.01% with respect to the HEU core and reference LEU model.
Journal title
Nuclear Engineering and Design Eslah
Serial Year
2011
Journal title
Nuclear Engineering and Design Eslah
Record number
1591109
Link To Document