Title of article :
Thermal-fluid characteristics of the transuranics fuel in a deep-burn HTR core
Author/Authors :
Jun، نويسنده , , Ji Su and Lim، نويسنده , , Hong Sik and Jo، نويسنده , , Chang Keun and Noh، نويسنده , , Jae Man and Venneri، نويسنده , , Francesco، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
3867
To page :
3878
Abstract :
The Deep Burn Project is evaluating the feasibility of the DB-HTR (Deep Burn High Temperature Reactor) to achieve a very high utilization of transuranics (TRU) derived from the recycle of LWR spent fuel. This study intends to evaluate the thermal-fluid and safety characteristics of TRU fuel in a DB-HTR core using GAMMA+ code. The key design characteristics of the DB-HTR core are more fuel rings (five fuel-rings), less central reflectors (three rings) and decay power curves due to the TRU fuel compositions that are different from the UO2 fuel. This study considered three types of TRU kernel compositions such as 100%(PuO2 + NpO2 + Am), 99.8%(PuO1.8, NpO2) + 0.2%UO2 + 0.6 mole SiC getter, and 70%(PuO1.8, NpO2) + 30%UO2 + 0.6 mole SiC getter. The first fuel type of TRU kernel produces higher decay power than the UO2 kernel. For the second and the third fuel types, removing the initial Am isotopes and reducing the volumetric packing fraction of TRISO particles will reduce the decay power. The flow distribution, core temperature and TRISO temperature profiles at the steady state were examined. As a safety performance, this study mainly evaluated the peak fuel temperature during LPCC (low pressure conduction cooling) event with considering the impact of decay power, the annealing effect of the irradiated thermal conductivity of graphite, and the impact of the FB (fuel block) end-flux-peaking. For the 600 MWth DB-HTR core, the peak fuel temperature of 100%(PuO2 + NpO2 + Am) TRU was found to be much higher than the transient fuel design limit of 1600 °C due to the lack of heat absorber volume in the central reflector as well as to the increased decay power of the TRU fuel compositions. For a 0.2%UO2 mixed or a 30%UO2 mixed TRU, the peak fuel temperature was decreased due to the reduced decay power, however, it was still higher than 1600 °C due to the lack of heat absorber volume in the central reflector.
Journal title :
Nuclear Engineering and Design Eslah
Serial Year :
2011
Journal title :
Nuclear Engineering and Design Eslah
Record number :
1591357
Link To Document :
بازگشت