Title of article :
Optimal filters for a hidden Markov random field model
Author/Authors :
Aggoun، نويسنده , , L. and Benkherouf، نويسنده , , L. and Benmerzouga، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
A Markov random field (MRF) is a useful technical tool for modeling dynamics systems exhibiting some type of spatio-temporal variability. In this paper, we propose optimal filters for the states of a partially observed temporal Markov random field. We also discuss parameters estimation. This generalizes an earlier work by Elliott and Aggoun [1].
Keywords :
Spatio-Temporal models , Measure change techniques , Hidden Markov Models , optimal filtering
Journal title :
Mathematical and Computer Modelling
Journal title :
Mathematical and Computer Modelling