Title of article :
Favardʹs inequality on average values of convex functions
Author/Authors :
Daniel Wulbert، نويسنده , , D.E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
9
From page :
1383
To page :
1391
Abstract :
Let f ≥ 0 be a continuous, concave function on [a, b]. Let ƒ = (1/(b - a)) δab f(t)dt. Favardʹs inequality is that, when δ = f̄, 12δ∫ƒ−δƒ+δψ(u)du ≥ 1b − a∫ab ψ (ƒ(t)) dt for all convex functions, ψ, defined on (f̄ - δ, f̄ + δ). We show there is a δ for which inequality (1) is valid for a class of nonconvex functions ψ. Further, there is an optimal δ for which the reverse inequality of line (1) is true. The reverse inequality is strictly sharper (in this setting) then Jensenʹs inequality.
Keywords :
Favardיs inequality , Convex functions , Jensenיs inequality , Generalized convex functions , Average values
Journal title :
Mathematical and Computer Modelling
Serial Year :
2003
Journal title :
Mathematical and Computer Modelling
Record number :
1592833
Link To Document :
بازگشت