Title of article :
Antiperiodic solutions for semilinear evolution equations
Author/Authors :
Chen، نويسنده , , Yuqing and Cho، نويسنده , , Yeol Je and Jung، نويسنده , , Jong Soo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
8
From page :
1123
To page :
1130
Abstract :
In this paper, we study the existence problem of antiperiodic solutions for the following first-order semilinear evolution equation: u ʹ ( t ) + A u ( t ) + ∂ G u ( t ) + f ( t ) = 0 , t ∈ R ; u ( t + T ) = - u ( t ) , t ∈ R , in a Hilbert space H, where A is a self-adjoint operator, ∂G is the gradient of G. Existence results are obtained under assumptions that D(A) is compactly embedded into H and ∂G is continuous or G is a convex function, which extend some known results in [1,2].
Keywords :
Antiperiodic solution , Semilinear evolution equation , Self-adjoint operator
Journal title :
Mathematical and Computer Modelling
Serial Year :
2004
Journal title :
Mathematical and Computer Modelling
Record number :
1593388
Link To Document :
بازگشت