Title of article
General approximation solvability of a system of strongly --pseudomonotonic nonlinear variational inequalities and projection methods
Author/Authors
Hajjafar، نويسنده , , Ali and Verma، نويسنده , , Ram U. Verma، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
8
From page
150
To page
157
Abstract
Let K be nonempty closed convex subsets of a real Hilbert space H . Approximation solvability of a generalized system of nonlinear strongly g - r -pseudomonotonic variational inequality (SNVI) problems based on the convergence of projection methods is presented as follows: find elements x ∗ , y ∗ ∈ K (and hence g ( x ∗ ) , g ( y ∗ ) ∈ K ) such that 〈 ρ T ( y ∗ ) + g ( x ∗ ) − g ( y ∗ ) , g ( x ) − g ( x ∗ ) 〉 ≥ 0 , ∀ g ( x ) ∈ K and for ρ > 0 , 〈 η T ( x ∗ ) + g ( y ∗ ) − g ( x ∗ ) , g ( x ) − g ( y ∗ ) 〉 ≥ 0 , ∀ g ( x ) ∈ K and for η > 0 , where T : K → H and g : K → K are nonlinear mappings.
Keywords
Approximation solvability , projection methods , Strongly g - r -pseudomonotonic mappings , System of nonlinear variational inequalities
Journal title
Mathematical and Computer Modelling
Serial Year
2006
Journal title
Mathematical and Computer Modelling
Record number
1594022
Link To Document