Title of article
The application of an oblique-projected Landweber method to a model of supervised learning
Author/Authors
Johansson، نويسنده , , Bjِrn and Elfving، نويسنده , , Tommy and Kozlov، نويسنده , , Vladimir and Censor، نويسنده , , Yair and Forssén، نويسنده , , Per-Erik and Granlund، نويسنده , , Gِsta، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
18
From page
892
To page
909
Abstract
This paper brings together a novel information representation model for use in signal processing and computer vision problems, with a particular algorithmic development of the Landweber iterative algorithm. The information representation model allows a representation of multiple values for a variable as well as an expression for confidence. Both properties are important for effective computation using multi-level models, where a choice between models will be implementable as part of the optimization process. It is shown that in this way the algorithm can deal with a class of high-dimensional, sparse, and constrained least-squares problems, which arise in various computer vision learning tasks, such as object recognition and object pose estimation. While the algorithm has been applied to the solution of such problems, it has so far been used heuristically. In this paper we describe the properties and some of the peculiarities of the channel representation and optimization, and put them on firm mathematical ground. We consider the optimization a convexly constrained weighted least-squares problem and propose for its solution a projected Landweber method which employs oblique projections onto the closed convex constraint set. We formulate the problem, present the algorithm and work out its convergence properties, including a rate-of-convergence result. The results are put in perspective with currently available projected Landweber methods. An application to supervised learning is described, and the method is evaluated in an experiment involving function approximation, as well as application to transient signals.
Keywords
Projected Landweber , Nonnegative constraint , preconditioner , Supervised learning , Channel representation
Journal title
Mathematical and Computer Modelling
Serial Year
2006
Journal title
Mathematical and Computer Modelling
Record number
1594124
Link To Document