Title of article :
Hamiltonian connectivity of 2-tree-generated networks
Author/Authors :
Cheng، نويسنده , , Eddie and Lipman، نويسنده , , Marc J. and Liptلk، نويسنده , , Lلszlَ and Stiebel، نويسنده , , David، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
18
From page :
787
To page :
804
Abstract :
In this paper we consider a class of Cayley graphs that are generated by certain 3-cycles on the alternating group A n . These graphs are generalizations of the alternating group graph A G n . We look at the case when the 3-cycles form a “tree-like structure”, and analyze the Hamiltonian connectivity of such graphs. We prove that even with 2 n − 7 vertices deleted, the remaining graph is Hamiltonian connected, i.e. there is a Hamiltonian path between every pair of vertices.
Keywords :
Interconnection network , Cayley graph , Alternating group graph , Hamiltonian connectivity
Journal title :
Mathematical and Computer Modelling
Serial Year :
2008
Journal title :
Mathematical and Computer Modelling
Record number :
1595718
Link To Document :
بازگشت