• Title of article

    Hamiltonian connectivity of 2-tree-generated networks

  • Author/Authors

    Cheng، نويسنده , , Eddie and Lipman، نويسنده , , Marc J. and Liptلk، نويسنده , , Lلszlَ and Stiebel، نويسنده , , David، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    18
  • From page
    787
  • To page
    804
  • Abstract
    In this paper we consider a class of Cayley graphs that are generated by certain 3-cycles on the alternating group A n . These graphs are generalizations of the alternating group graph A G n . We look at the case when the 3-cycles form a “tree-like structure”, and analyze the Hamiltonian connectivity of such graphs. We prove that even with 2 n − 7 vertices deleted, the remaining graph is Hamiltonian connected, i.e. there is a Hamiltonian path between every pair of vertices.
  • Keywords
    Interconnection network , Cayley graph , Alternating group graph , Hamiltonian connectivity
  • Journal title
    Mathematical and Computer Modelling
  • Serial Year
    2008
  • Journal title
    Mathematical and Computer Modelling
  • Record number

    1595718