Title of article :
Fast approximate solution of Bloch equation for simulation of RF artifacts in Magnetic Resonance Imaging
Author/Authors :
Balac، نويسنده , , Stéphane and Chupin، نويسنده , , Laurent، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The technique used to spot information in Magnetic Resonance Imaging (MRI) uses electromagnetic fields. Even minor perturbations of these magnetic fields can disturb the imaging process and may render clinical images inaccurate or useless. Modelling and numerical simulation of the effects of static field inhomogeneities are now well established. Less attention has been paid to mathematical modelling of the effects of radio-frequency (RF) field inhomogeneities in the imaging process. When considering RF field inhomogeneities, the major difficulty is that the mathematical expression of the magnetisation vector is not anymore explicitly known in contrast with the unperturbed case. Indeed, the Bloch equation becomes an ordinary differential equation with nonconstant coefficients that cannot be solved analytically. The use of standard numerical schemes for ordinary differential equations to compute the magnetisation vector appears to be costly and not well suited for MRI image simulation. In this paper, we present an original method for solving the Bloch equation based on a truncated series expansion of the solution. The computational cost of the method reduces to the computation of the eigenelements of a block tridiagonal matrix of a very small size.
Keywords :
Bloch equation , Magnetic Resonance Imaging , Floquet Theory , Fourier series expansion
Journal title :
Mathematical and Computer Modelling
Journal title :
Mathematical and Computer Modelling