Title of article :
SEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS
Author/Authors :
S. Gholizadeh، S. Gholizadeh نويسنده دانشكده فني و مهندسي دانشگاه Urmia S. Gholizadeh, S. Gholizadeh , M.R. Sheidaii، M.R. Sheidaii نويسنده Department of Civil Engineering, Urmia University, Urmia, Iran M.R. Sheidaii, M.R. Sheidaii , S. Farajzadeh، S. Farajzadeh نويسنده Department of Civil Engineering, Urmia University, Urmia, Iran S. Farajzadeh, S. Farajzadeh
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2012
Pages :
17
From page :
29
To page :
45
Abstract :
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-onsquare double layer grids with the variable length of span and height are considered. Backpropagation (BP), radial basis function (RBF) and generalized regression (GR) neural networks are trained for efficiently prediction of the seismic design of the structures. The numerical results demonstrate the superiority of the GR over the BP and RBF neural networks.
Journal title :
International Journal of Optimization in Civil Engineering
Serial Year :
2012
Journal title :
International Journal of Optimization in Civil Engineering
Record number :
1596153
Link To Document :
بازگشت