Title of article
Computing the eigenvalues of a class of nonlocal Sturm–Liouville problems
Author/Authors
Chanane، نويسنده , , Bilal، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
8
From page
225
To page
232
Abstract
In this paper, we shall use the regularized sampling method introduced recently to compute the eigenvalues of Sturm–Liouville problems with nonlocal conditions { − y ″ + q ( x ) y = λ y , x ∈ [ 0 , 1 ] χ 0 ( y ) = 0 , χ 1 ( y ) = 0 , where q ∈ L 1 and, χ 0 and χ 1 are continuous linear functionals defined by χ 0 ( y ) = ∫ 0 1 [ y ( t ) d ψ 1 ( t ) + y ′ ( t ) d ψ 2 ( t ) ] , χ 1 ( y ) = ∫ 0 1 [ y ( t ) d ϕ 1 ( t ) + y ′ ( t ) d ϕ 2 ( t ) ] , where χ 0 and χ 1 are independent, and ψ 1 , ψ 2 , ϕ 1 and ϕ 2 are functions of bounded variations. Integration is in the sense of Riemann–Stieltjes. A few numerical examples will be presented to illustrate the merits of the method, and comparisons will be made with the exact eigenvalues when they are available.
Keywords
Second order Sturm–Liouville problems , Eigenvalue problems , Whittaker–Shannon–Kotel’nikov theorem , Nonlocal condition , Integral boundary condition
Journal title
Mathematical and Computer Modelling
Serial Year
2009
Journal title
Mathematical and Computer Modelling
Record number
1596412
Link To Document