Title of article :
A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media
Author/Authors :
Ghajari، نويسنده , , M. and Iannucci، نويسنده , , René L. and Curtis، نويسنده , , P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
A new material model for the dynamic fracture analysis of anisotropic materials has been proposed within the framework of the bond-based peridynamic theory. This model enables predicting complex fracture phenomena such as spontaneous crack nucleation and crack branching, curving and arrest, a capability inherited from the bond-based peridynamic theory. An important feature of the model is that the bond properties, i.e. the stiffness constant and critical stretch, are continuous functions of bond orientation in the principal material axes. This facilitates fracture analysis of anisotropic materials with random orientations, such as polycrystalline microstructures. Elastic and fracture behaviour of the model has been verified through simulating uniaxial tension of a composite plate and fracture of a cortical bone compact tension specimen, and making quantitative comparisons to analytical and experimental data. To further demonstrate the capabilities of the proposed model, dynamic fracture of a polycrystalline microstructure (alumina ceramic) has been simulated. The influence of the grain boundary and grain interior fracture energies on the interacting and competing fracture modes of polycrystalline materials, i.e. intergranular and transgranular fracture, has been studied.
Keywords :
peridynamics , Anisotropy , bone , Ceramic , fracture
Journal title :
Computer Methods in Applied Mechanics and Engineering
Journal title :
Computer Methods in Applied Mechanics and Engineering