Title of article
Existence and global attractivity of positive periodic solutions of competitor–competitor–mutualist Lotka–Volterra systems with deviating arguments
Author/Authors
Lv، نويسنده , , Xiang and Yan، نويسنده , , Ping and Lu، نويسنده , , Shiping، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
10
From page
823
To page
832
Abstract
In this paper, we study the existence and global attractivity of periodic solutions of competitor–competitor–mutualist Lotka–Volterra systems with deviating arguments ( ∗ ) { x 1 ′ ( t ) = x 1 ( t ) ( r 1 ( t ) − a 11 ( t ) x 1 ( t − τ 11 ( t ) ) − a 12 ( t ) x 2 ( t − τ 12 ( t ) ) + a 13 ( t ) x 3 ( t − τ 13 ( t ) ) ) x 2 ′ ( t ) = x 2 ( t ) ( r 2 ( t ) − a 21 ( t ) x 1 ( t − τ 21 ( t ) ) − a 22 ( t ) x 2 ( t − τ 22 ( t ) ) + a 23 ( t ) x 3 ( t − τ 23 ( t ) ) ) x 3 ′ ( t ) = x 3 ( t ) ( r 3 ( t ) + a 31 ( t ) x 1 ( t − τ 31 ( t ) ) + a 32 ( t ) x 2 ( t − τ 32 ( t ) ) − a 33 ( t ) x 3 ( t − τ 33 ( t ) ) ) , where x 1 ( t ) and x 2 ( t ) denote the densities of competing species at time t , x 3 ( t ) denotes the density of cooperating species at time t , r i , a i j ∈ C ( R , [ 0 , ∞ ) ) and τ i j ∈ C ( R , R ) are w -periodic functions ( ω > 0 ) with r ̄ i = 1 w ∫ 0 w r i ( s ) d s > 0 ; a ̄ i j = 1 w ∫ 0 w a i j ( s ) ≥ 0 , i , j = 1 , 2 , 3 . We obtain sufficient conditions for the existence and global attractivity of positive periodic solutions of (∗) by Krasnoselskii’s fixed point theorem and the construction of Lyapunov functions.
Keywords
Competitor–competitor–mutualist Lotka–Volterra systems , Krasnoselskii’s fixed point theorem , lyapunov function , Positive periodic solutions
Journal title
Mathematical and Computer Modelling
Serial Year
2010
Journal title
Mathematical and Computer Modelling
Record number
1596875
Link To Document