Title of article
Existence and symmetry of positive solutions of an integral equation system
Author/Authors
Huang، نويسنده , , Xiaotao and Li، نويسنده , , Dongsheng and Wang، نويسنده , , Lihe، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
10
From page
892
To page
901
Abstract
In this paper, we investigate positive solutions of the following integral equation system in R n : { u ( x ) = ∫ R n ∣ x − y ∣ α − n v ( y ) p d y , v ( x ) = ∫ R n ∣ x − y ∣ β − n u ( y ) q d y , where p , q > 1 , 0 < α , β < n . With the method of moving spheres, we show the existence and the exact form of its solution in the case p ≤ ( n + α ) / ( n − β ) , q ≤ ( n + β ) / ( n − α ) ; and with the method of moving planes, we prove the symmetry and monotonicity of its solution in the case 1 p + 1 + 1 q + 1 = n − α 2 n + β − α + n − β 2 n + α − β .
Keywords
Moving spheres , System of integral equations , Symmetry and monotonicity , Moving planes
Journal title
Mathematical and Computer Modelling
Serial Year
2010
Journal title
Mathematical and Computer Modelling
Record number
1597207
Link To Document