Title of article :
Positive solutions of the singular eigenvalue problem for a higher-order differential equation on time scales
Author/Authors :
Hu، نويسنده , , Liang-Gen and Zhou، نويسنده , , Xian-Feng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
667
To page :
677
Abstract :
In this paper, we are concerned with the singular eigenvalue problem for 2 n th-order differential equations { ( − 1 ) n y △ 2 n ( t ) = μ h ( t ) f ( t , y ( t ) ) , t ∈ [ a , b ] , y △ 2 i ( a ) − β i + 1 y △ 2 i + 1 ( a ) = α i + 1 y △ 2 i ( η ) , γ i + 1 y △ 2 i ( η ) = y △ 2 i ( b ) , 0 ≤ i ≤ n − 1 , where μ is a positive parameter, η ∈ ( a , b ) , n ≥ 1 , β i ≥ 0 , 1 < γ i < b − a + β i η − a + β i , 0 ≤ α i < b − γ i η + ( γ i − 1 ) ( a − β i ) b − η , i = 1 , 2 , ⋯ , n . The nonlinearities h : ( a , b ) → [ 0 , + ∞ ) and f : [ a , b ] × ( 0 , + ∞ ) → [ 0 , + ∞ ) are continuous; h may have singularity at t = a and/or t = b and f has singularity at y = 0 . Using the fixed point index theorem and the first eigenvalue of the positive linear operator obtained from the Krein–Rutman theorem, we investigate the existence of positive solutions of the eigenvalue problem and obtain the interval of parameter μ .
Keywords :
Singularity , Eigenvalue Problem , The first eigenvalue , Positive solution , Time scales
Journal title :
Mathematical and Computer Modelling
Serial Year :
2011
Journal title :
Mathematical and Computer Modelling
Record number :
1597590
Link To Document :
بازگشت