Title of article :
vertex-set partition into nonempty parts
Author/Authors :
Cook، نويسنده , , Kathryn and Dantas، نويسنده , , Simone and Eschen، نويسنده , , Elaine M. and Faria، نويسنده , , Luerbio and de Figueiredo، نويسنده , , Celina M.H. and Klein، نويسنده , , Sulamita، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
1259
To page :
1264
Abstract :
A graph is 2 K 2 -partitionable if its vertex set can be partitioned into four nonempty parts A , B , C , D such that each vertex of A is adjacent to each vertex of B , and each vertex of C is adjacent to each vertex of D . Determining whether an arbitrary graph is 2 K 2 -partitionable is the only vertex-set partition problem into four nonempty parts according to external constraints whose computational complexity is open. We establish that the 2 K 2 -partition problem parameterized by minimum degree is fixed-parameter tractable. We also show that for C 4 -free graphs, circular-arc graphs, spiders, P 4 -sparse graphs, and bipartite graphs the 2 K 2 -partition problem can be solved in polynomial time.
Keywords :
graph algorithms , computational complexity , Fixed-parameter algorithms , Structural graph theory , Combinatorial problems
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1598271
Link To Document :
بازگشت