Title of article :
Decomposition of sparse graphs, with application to game coloring number
Author/Authors :
Montassier، نويسنده , , Mickael and Pêcher، نويسنده , , Arnaud and Raspaud، نويسنده , , André and West، نويسنده , , Douglas B. and Zhu، نويسنده , , Xuding، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
4
From page :
1520
To page :
1523
Abstract :
Let k be a nonnegative integer, and let m k = 4 ( k + 1 ) ( k + 3 ) k 2 + 6 k + 6 . We prove that every simple graph with maximum average degree less than m k decomposes into a forest and a subgraph with maximum degree at most k (furthermore, when k ≤ 3 both subgraphs can be required to be forests). It follows that every simple graph with maximum average degree less than m k has game coloring number at most 4 + k .
Keywords :
Edge-partition , Forest , Subgraphs with bounded maximum degree
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1598276
Link To Document :
بازگشت