Title of article :
Existence of strong symmetric self-orthogonal diagonal Latin squares
Author/Authors :
Cao، نويسنده , , H. and Li، نويسنده , , W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
3
From page :
841
To page :
843
Abstract :
A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. A Latin square is self-orthogonal if it is orthogonal to its transpose. A diagonal Latin square L of order n is strongly symmetric, denoted by SSSODLS ( n ) , if L ( i , j ) + L ( n − 1 − i , n − 1 − j ) = n − 1 for all i , j ∈ N = { 0 , 1 , … , n − 1 } . In this note, we shall prove that an SSSODLS ( n ) exists if and only if n ≡ 0 , 1 , 3 ( mod 4 ) and n ≠ 3 .
Keywords :
Strongly symmetric , Diagonal Latin square , Self-orthogonal
Journal title :
Discrete Mathematics
Serial Year :
2011
Journal title :
Discrete Mathematics
Record number :
1598412
Link To Document :
بازگشت