Title of article :
Edge-choosability of planar graphs without adjacent triangles or without 7-cycles
Author/Authors :
Hou، نويسنده , , Jianfeng and Liu، نويسنده , , Guizhen and Cai، نويسنده , , Jiansheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
77
To page :
84
Abstract :
A graph G is edge- L -colorable, if for a given edge assignment L = { L ( e ) : e ∈ E ( G ) } , there exists a proper edge-coloring ϕ of G such that ϕ ( e ) ∈ L ( e ) for all e ∈ E ( G ) . If G is edge- L -colorable for every edge assignment L with | L ( e ) | ≥ k for e ∈ E ( G ) , then G is said to be edge- k -choosable. In this paper, we prove that if G is a planar graph with maximum degree Δ ( G ) ≠ 5 and without adjacent 3-cycles, or with maximum degree Δ ( G ) ≠ 5 , 6 and without 7-cycles, then G is edge- ( Δ ( G ) + 1 ) -choosable.
Keywords :
Planar graph , Edge-coloring , Choosability , cycle , Triangle
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598465
Link To Document :
بازگشت